
PPP

PPP ii

COLLABORATORS

TITLE :

PPP

ACTION NAME DATE SIGNATURE

WRITTEN BY January 17, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

PPP iii

Contents

1 PPP 1

1.1 PPP.guide . 1

1.2 PPP.guide/NODE_DISCLAIMER . 2

1.3 PPP.guide/NODE_CONDITIONS . 2

1.4 PPP.guide/NODE_REGISTRATION . 3

1.5 PPP.guide/NODE_INTRODUCTION . 4

1.6 PPP.guide/NODE_SANAII . 6

1.7 PPP.guide/NODE_PPP . 6

1.8 PPP.guide/NODE_PPPSLIP . 7

1.9 PPP.guide/NODE_REQUIREMENTS . 8

1.10 PPP.guide/NODE_INSTALLATION . 9

1.11 PPP.guide/NODE_INST_AMITCPFZD . 9

1.12 PPP.guide/NODE_INST_AMITCPFTC . 11

1.13 PPP.guide/NODE_INST_INETTTF . 13

1.14 PPP.guide/NODE_CONFIGURATION . 15

1.15 PPP.guide/NODE_7WIRE . 18

1.16 PPP.guide/NODE_ACCM . 18

1.17 PPP.guide/NODE_ATH . 19

1.18 PPP.guide/NODE_BADXONXOFF . 19

1.19 PPP.guide/NODE_BROKENHDLC . 19

1.20 PPP.guide/NODE_CD . 20

1.21 PPP.guide/NODE_CHAP . 20

1.22 PPP.guide/NODE_CHAPFILE . 21

1.23 PPP.guide/NODE_DIALSCRIPT . 22

1.24 PPP.guide/NODE_DIALWINDOW . 22

1.25 PPP.guide/NODE_DNCP . 22

1.26 PPP.guide/NODE_EOFMODE . 23

1.27 PPP.guide/NODE_EXERCISE . 23

1.28 PPP.guide/NODE_FCS . 24

1.29 PPP.guide/NODE_IGNOREFCS . 24

PPP iv

1.30 PPP.guide/NODE_IPCP . 25

1.31 PPP.guide/NODE_IPSTR . 25

1.32 PPP.guide/NODE_LOG . 25

1.33 PPP.guide/NODE_LQR . 27

1.34 PPP.guide/NODE_MAXCONFIG . 27

1.35 PPP.guide/NODE_MAXFAIL . 27

1.36 PPP.guide/NODE_MAXTERM . 28

1.37 PPP.guide/NODE_MTU . 28

1.38 PPP.guide/NODE_NOACPC . 29

1.39 PPP.guide/NODE_NOEOFMODE . 29

1.40 PPP.guide/NODE_NOID . 30

1.41 PPP.guide/NODE_NOREQ . 30

1.42 PPP.guide/NODE_NOVJC . 30

1.43 PPP.guide/NODE_ONLINE . 31

1.44 PPP.guide/NODE_PAP . 31

1.45 PPP.guide/NODE_PAPFILE . 32

1.46 PPP.guide/NODE_REMOTEIP . 32

1.47 PPP.guide/NODE_SAVE . 33

1.48 PPP.guide/NODE_SERBAUD . 33

1.49 PPP.guide/NODE_SERBUF . 34

1.50 PPP.guide/NODE_SERNAME . 34

1.51 PPP.guide/NODE_SERUNIT . 35

1.52 PPP.guide/NODE_SHARED . 35

1.53 PPP.guide/NODE_STARTUP . 35

1.54 PPP.guide/NODE_TIMEOUT . 36

1.55 PPP.guide/NODE_USEODU . 36

1.56 PPP.guide/NODE_VJCMODE . 37

1.57 PPP.guide/NODE_DIALING . 37

1.58 PPP.guide/NODE_INACTIVITY . 39

1.59 PPP.guide/NODE_RESTRICTIONS . 40

1.60 PPP.guide/NODE_UTILITY . 42

1.61 PPP.guide/NODE_PPPINFO . 43

1.62 PPP.guide/NODE_PPPSTATS . 43

1.63 PPP.guide/NODE_PPPLQR . 43

1.64 PPP.guide/NODE_PPPLOG . 44

1.65 PPP.guide/NODE_HISTORY . 44

1.66 PPP.guide/NODE_ACKNOWLEDGEMENTS . 47

PPP 1 / 48

Chapter 1

PPP

1.1 PPP.guide

PPP

This is the documentation for PPP V1.45, a SANA-II compatible PPP
device. Copyright (C) 1994,1995,1996 Holger Kruse. All rights reserved.

Disclaimer
Legal information

Usage / Copying
Usage and copying conditions

Registration
Shareware registration

Introduction
Introduction to PPP

Requirements
Required hardware and software

Installation
How to install PPP

Configuration
Description of the config file

Dialing
The builtin dialer

Inactivity Timeout
Information about inactivity timeout

Restrictions
Restrictions of the current version

PPP 2 / 48

Utilities
The enclosed utility programs

History
History of PPP

Acknowledgements
Acknowledgements

1.2 PPP.guide/NODE_DISCLAIMER

Disclaimer

PPP IS SUPPOSED TO BE A SANA-II COMPATIBLE PPP DEVICE THAT CAN BE USED
TO CONNECT YOUR AMIGA TO ANY OTHER PPP HOST OVER A SERIAL LINE. EVEN
THOUGH EVERY EFFORT HAS BEEN MADE TO MAKE PPP AS COMPATIBLE TO THE
SANA-II AND PPP STANDARDS AS POSSIBLE, I CANNOT RULE OUT THE
POSSIBILITY THAT PPP HAS BUGS THAT HAVE HARMFUL SIDE EFFECTS ON YOUR
SYSTEM OR ON THE HOST YOUR ARE CONNECTED TO.

I HEREBY REJECT ANY LIABILITY OR RESPONSIBILITY FOR THESE OR ANY OTHER
CONSEQUENCES FROM THE USE OF PPP WHATSOEVER. THIS INCLUDES, BUT IS NOT
LIMITED TO, DAMAGE TO YOUR EQUIPMENT, TO YOUR DATA, TO THE PPP HOST YOU
ARE CONNECTED TO, ANY EQUIPMENT CONNECTED TO THAT HOST, PERSONAL
INJURIES, FINANCIAL LOSS OR ANY OTHER KINDS OF SIDE EFFECTS.

PPP IS PROVIDED AS-IS. THIS MEANS I DO NOT GUARANTEE THAT PPP IS FIT
FOR ANY SPECIFIC PURPOSE AND I DO NOT GUARANTEE ANY BUG FIXES, UPDATES
OR HELP DURING ERROR RECOVERY.

1.3 PPP.guide/NODE_CONDITIONS

Usage / Copying

PPP is shareware. In this case this means that there are three
different versions of the program:

* an unregistered freely distributable (under the conditions outlined
below) version that does not have most of the more powerful PPP
options.

* a version for registered users that has all implemented PPP options
enabled and usually provides a much higher throughput than the
unregistered version. This version requires a personalized key file
that registered users receive from me. The key file may NOT be made
available to other users ! Giving the key file to other users or
using key files that you did not receive directly from me for your

PPP 3 / 48

personal use is considered an act of software piracy ! The device
itself (without the keyfile) is freely distributable (under the
conditions outlined below), just like the unregistered version.

* a special version for distribution with commercial Amiga networking
software. If you are producing or distributing Amiga networking
software and would like to obtain a license to include ‘ppp.device’
in your software, please contact me. (See

Shareware registration
for my address.)

If you want to distribute the unregistered of registered version of
PPP, the following conditions apply:

* The sales price must not be higher than the cost of an (empty)
disk plus a nominal copying fee plus costs for shipping. The total
price must not be higher than 6 US$ or 10 DM or the equivalent in
any other currency.

* All parts of the program and the documentation must be complete.
The distribution of single parts or incomplete subsets of the
original distribution is not allowed. Distribution of keyfiles is
not allowed.

* PPP or parts of it may not be sold in combination with or as part
of commercial software. If you would like to distribute a PPP
device together with your Amiga networking software, please
contact me ! You can obtain a license from me to include the full
PPP version with your software. This would be a special version
licensed to your company for use with one software package only.
It is neither identical to the evaluation version nor to the
version for registered users. However until you have my written
approval, do not assume that you can distribute any PPP device
version with your software.

* Program and documentation may not be changed in any way.
Exception (this means: acceptable) is the use of archivers such as
LHA and packers like Imploder or Powerpacker, as long as it
remains possible to retrieve the original program/data.

1.4 PPP.guide/NODE_REGISTRATION

Registration

If you often use ppp.device to connect your Amiga to other machines,
I suggest you obtain the registered ppp.device version from me. It has
many features which are not present in the evaluation version and
usually gives you a considerably higher throughput and better
interactive response time on PPP links.

To register, print the enclosed form REGISTRATION and fill it out,
then send it to the address on top of the form along with the

PPP 4 / 48

registration fee of US$ 15.

The only acceptable methods of payment are:

* cash in US$ or DM

* a check or money order in US$ drawn on a US bank

* an international postal money order in US$. This is probably the
easiest and safest way for European customers. You can buy one at
your local post office.

Please do NOT send EuroCheques !

Please do NOT make any kind of payment in a currency other than US$
or DM !

Unless you suggest otherwise I will send you the key file and the
latest registered version on an 880kB floppy disk.

If you have Internet access and some secure information channel
(PGP/RIPEM etc.) you can get the latest archive by ftp, and I could
send you the keyfile by encrypted e-mail. In this case please send me
your key fingerprint (for PGP) or MD5 key digest (for RIPEM) and a
pointer to your public key along with your registration.

I assure you that the information you provide will be treated
confidentially.

Thank you very much in advance !

If you send me your registration during the US summer term (May -
July), please expect a LONG delay until you receive answer. I might not
be at home for one or two months - sorry !

My address is:

Holger Kruse
12006 Coed Drive
Orlando, FL 32826
USA

Internet: kruse@cs.ucf.edu
WWW: http://www.america.com/~kruse/home.html

1.5 PPP.guide/NODE_INTRODUCTION

Introduction

This archive contains a SANA-II compatible implementation of PPP for
Amiga computers.

For your information:

PPP 5 / 48

SANA-II
General information about SANA-II

PPP
General information about PPP

PPP vs. SLIP
Comparison of PPP and SLIP

This implementation of ppp.device has so far only been tested and
used with AmiTCP/IP and I-Net 225, although it probably works with
AS225 and Envoy, too. The information about installation and
configuration applies to AmiTCP/IP and I-Net 225 only, so if you want
to use ppp.device with AS225 or Envoy you have to figure these things
out for yourself...

At this time the device does not support incoming calls in any way,
i.e. it can probably not be combined with getty or similar programs in
any useful manner, and all PPP configuration options (like IP number
negotiation, authentication etc.) assume a client-like operation, i.e.
they assume that you are the one who attempts to connect your Amiga to
the Internet over the PPP link.

This also means that you cannot use the current ppp.device to build
a mailbox-like environment on your Amiga that waits for incoming calls,
assigns IP numbers to callers and provides them with a TCP/IP
connection to your Amiga. It is however possible to use ppp.device to
connect two Amigas by a PPP link, if you have access to both Amigas,
i.e. if you can power them up and start ppp.device on them at about the
same time.

This limitation only applies to the way a connection is established.
Once the connection is up and running, your Amiga can act as both
client and server in the usual way, i.e. it is for instance possible to
telnet into your Amiga from outside, if you have setup your protocol
stack accordingly, or to run an X-Windows server like AmiWin on your
Amiga and access it from the other side of the PPP link.

Currently the device only supports protocol stacks that are based on
IP, such as AS225, I-Net 225, AmiTCP/IP and Envoy, or on DECnet, such
as EnlanDFS. Other protocol stacks for which PPP specifications exist
(like AppleTalk, Novell IPX or ISO/OSI) are not supported yet. If you
know of any such protocol stack that is SANA-II compatible I would
appreciate some information about it.

Since version 1.17 ppp.device has a builtin dialer that can be used
to dial up a connection, send userid and password to the host and
select PPP mode on the host. See

The builtin dialer
for details how to

use the dialer.

If you do not want to use the builtin dialer, you can still use
terminal programs, ARexx scripts etc. for dialing and only start

PPP 6 / 48

ppp.device when the connection has been established.

1.6 PPP.guide/NODE_SANAII

SANA-II
=======

SANA-II is a standard specified by Commodore that describes the
interface between a networking protocol stack (such as AmiTCP/IP,
AS225, I-Net 225 or Envoy) and the underlying network device (such as
Ethernet, Arcnet or a serial RS-232 line running SLIP or PPP).

This ppp.device is compatible with SANA-II Rev 2.0, which has been
published by Commodore in early 1994, but can also be used with
programs that use earlier SANA-II specifications.

In theory any SANA-II compatible protocol stack can be combined with
any SANA-II compatible network device to transmit packets over the
corresponding hardware. Most networking software available for Amiga is
SANA-II compatible. The most notable exception is AmigaNOS (KA9Q), so
that program cannot be combined with the enclosed ppp.device.

You can run Envoy and AS225R2 over the same link simultaneously
(because of a ‘hack’ in Envoy), but not Envoy and AmiTCP/IP 2.3/3.0b.
This is not a limitation in the PPP driver, but in the old SANA-II
specifications, and the same problem exists with other drivers like
SLIP, too. This PPP implementation already conforms to the new SANA-II
specs which allows multiple IP protocol stacks over the same line, so
once Envoy and AmiTCP/IP get updated to conform to the new SANA-II
standard, you WILL be able to run them over a PPP link simultaneously.
I believe that the new AmiTCP/IP version 4.1 (and perhaps the 4.0 demo,
too) already conform to this standard if you use the "FILTER" switch in
the "interfaces" file.

1.7 PPP.guide/NODE_PPP

PPP
===

PPP (Point to Point Protocol) is an Internet draft standard for
transmission of network packets over serial lines, so it is similar in
purpose to the older SLIP protocol.

The PPP specifications are scattered over several RFCs which are
available by anonymous FTP from several sources, e.g. from
ftp.internic.net. The RFCs used for this PPP implementation are: 1144,
1171, 1172, 1331, 1332, 1333, 1334, 1548, 1549, 1570, 1661 and 1662.

The PPP standard specifies many optional features that programmers

PPP 7 / 48

can choose to implement. Most of these features are intended to improve
performance and increase throughput, particularly over slow serial
lines.

The registered version of ppp.device supports most of these
features. The unregistered evaluation version only supports the most
basic features. They should be enough to get a connection up and
running, but the performance will most likely be poor. To get the most
out of your PPP link you should obtain the registered PPP version.
Besides some additional features, the registered version is also
considerably faster than the evaluation version (usually by about 40%).

The PPP protocol is still under development and the IETF PPP work
group constantly improves and enhances the standard. I will try to keep
up with these improvements and implement new features in the registered
version of ppp.device when they become finalized. Some of the features
I have planned for future versions of ppp.device are:

* Compression. Currently the IETF PPP work group is looking at
various ways to provide "real" transparent data compression to PPP
links. I will probably implement some of them when they are
finalized. Currently the standardization process for compression
is being delayed by some patent issues.

* Better support for PPP over ISDN.

1.8 PPP.guide/NODE_PPPSLIP

PPP vs. SLIP
============

PPP and SLIP are quite similar in purpose, but very different in
implementation.

SLIP is a ‘non-standard’, i.e. it has not been made an official
standard because of its shortcomings. However many software packages
still use SLIP (or CSLIP) for serial links.

SLIP is completely incompatible to PPP. Some software packages
support PPP only, some support SLIP only and some support both.
However only one protocol is used at any time, so there is no such
thing as a combined PPP/SLIP.

PPP has been designed to be a ‘better SLIP’, because SLIP lacks
several important features, particularly

* SLIP does not have any checksums, so transmission errors must be
detected by the protocol stack, which is not always feasible.

* SLIP can only be used with up to two protocol stacks: one TCP/IP
protocol stack and one DECnet protocol stack. It is not possible
to run other protocol stacks (like AppleTalk, Novell etc.) over
the same link at the same time.

PPP 8 / 48

* SLIP is not extensible, i.e. it is not possible to improve it in
any (compatible) way.

* SLIP does not know about IP numbers (or TCP/IP at all, for that
matter), so it cannot help to negotiate IP numbers for dialup
serial lines.

* SLIP requires absolutely transparent lines, which makes it
impossible to use SLIP over lines that require XON/XOFF software
handshaking for instance.

PPP provides solutions for all of these problems and is very likely
to become the official Internet standard for packet transport over
serial lines in the future.

As far as performance is concerned: PPP is usually faster than SLIP
for TCP/IP connections like telnet and ftp, and about as fast as CSLIP,
within a margin of about %1. (However this applies only to the
registered version of this implementation. The unregistered PPP version
may be slower than SLIP.)

1.9 PPP.guide/NODE_REQUIREMENTS

Requirements

You need

* Any Amiga running Kickstart 2.04 and Workbench 2.04 or higher.
Kick2.04/WB2.1 and Kick3.1/WB3.1 were used for testing, but other
configurations should work as well.

* If you want to use ppp.device with a TCP/IP protocol stack you need
AmiTCP/IP V4.0demo, AmiTCP/IP V4.2 or higher, or I-Net 225. The
device WILL NOT WORK with AmiTCP/IP V2.2 or earlier versions !

The device also works with AmiTCP V2.3 or V3.0beta, but configuring
these versions for ppp is no longer supported, so you have to
figure out the configuration for them yourself. I STRONGLY suggest
you upgrade to AmiTCP/IP V4.0demo or V4.2/4.3.

If you currently have AmiTCP/IP V4.1 please get the patch to V4.2
from Aminet before installing ppp.device.

* Instead of AmiTCP/IP or I-Net 225 the device will probably work
with AS225 or Envoy, but that has not been tested yet.

* If you want to use ppp.device with DECnet, you need the commercial
Enlan-DFS.

* A 68020/68EC020 processor or higher is strongly recommended. The
archive contains versions for 68000/68010 CPUs and 68020+ CPUs.

PPP 9 / 48

1.10 PPP.guide/NODE_INSTALLATION

Installation

Sorry, I have not written one of those neat Installer scripts for
PPP, because the installation may be quite different for each system.

The installation of ppp.device depends on the protocol stack you
want to use:

Installation for AmiTCP/IP 4.0 demo

Installation for AmiTCP/IP 4.2/4.3 commercial

Installation for I-Net 225

1.11 PPP.guide/NODE_INST_AMITCPFZD

Installation for AmiTCP/IP 4.0 demo
===================================

First install AmiTCP/IP 4.0 demo using the Installer script that
comes with AmiTCP/IP. During the installation of AmiTCP/IP 4.0demo the
installation program asks you several questions. Answer as follows:

* Choose the network interface type "PPP".

* Choose the network interface to be used as "PPP".

* If you have a permanent (i.e. non-dynamic) IP address assigned to
your Amiga, enter it as the "default IP address". Otherwise enter
"0.0.0.0".

* If the IP address of your PPP host is constant and known to you,
enter it as the "destination address". Otherwise enter "0.0.0.0".

* Enter an empty string for the netmask.

* Enter an empty string for the default gateway.

After that install ppp.device:

* To install the evaluation version, choose one of the files
devs/ppp.device.000.eval (for 68000/68010) or
devs/ppp.device.020.eval (for 68020/68EC020 or higher) depending
on your processor type, and copy it to devs:networks/ppp.device.

* To install the registered version, choose one of the files
devs/ppp.device.000 (for 68000/68010) or devs/ppp.device.020 (for
68020/68EC020 or higher) (which are in a separate archive)

PPP 10 / 48

depending on your processor type, and copy it to
devs:networks/ppp.device. Then copy the keyfile you received from
me (PPP.key) to s:. The key file is your personal ID with your
name and serial number in it. Make sure that nobody has access to
it, particularly if you allow telnet or ftp dialins to your Amiga
from outside !

* To make the previous steps perfectly clear: The device must be
named ppp.device (not ppp.device.020 etc.) and it has to be
located in the directory devs:networks.

* Copy the contents of the bin/ directory to a location that is in
your path, preferably to AmiTCP:bin/.

* If your host requires PAP authentication, create a PAP password
file now. (See

PAP password file
).

* If your host requires CHAP authentication, create a CHAP password
file now. (See

CHAP password file
).

* Create a configuration file for the device. The name must be
ENV:SANA2/ppp0.config, where 0 is the unit number for ppp.device
(usually ‘0’ - this is NOT the unit number of your serial.device).
You should copy the file to ENVARC:SANA2/, too, to make the change
permanent. The overall file format is similar to the file format
used by the SLIP driver as described in the AmiTCP/IP
documentation. For a list of all options see

Configuration
, but a

single line
serial.device 0 57600 0.0.0.0 7WIRE

probably gets you started. Three comments here:

- Replace serial device 0 with the device name and unit number
of your serial device.

NOTE: ppp.device should work with any "serial.device"
replacement (e.g. "gvpser.device", "BaudBandit.device" etc.).
However you should not use "8n1.device", because I have
received many reports that this device may crash if used with
ppp.device.

- Replace 57600 with the baud rate you want to use on your
serial port. Note: If you use a terminal program to dial up
your connection, then this speed MUST be identical to the
speed between computer and modem that you used to establish
the connection in the terminal program. DO NOT use a physical
modem line speed here such as 14400 or 28800.

- If you know your permanent IP number, replace 0.0.0.0 with
that number. If you do not know your IP number or if it is
assigned to you dynamically for each call, do not change
0.0.0.0. This tells ppp.device to ask the remote host for

PPP 11 / 48

your IP number each time the link is negotiated.

After that you have to make several changes to the configuration
that the Installer created.

Changes to the "AmiTCP:bin/startnet" script:

* Delete the first few lines that start with
".key",".bra",".ket",".def".

* Add the line
online devs:networks/ppp.device 0

at the beginning of the file.

* Change the line starting with "AmiTCP:bin/ifconfig ppp0 ..."
to

AmiTCP:bin/ifconfig ppp0 $ppp0iplocal $ppp0ipremote

* Change the line starting with "AmiTCP:bin/route add ..." to
AmiTCP:bin/route add $ppp0iplocal localhost

* After that line, add the line
AmiTCP:bin/route add default $ppp0ipremote

Changes to the "AmiTCP:bin/stopnet" script:

* Add the line
offline ppp.device 0

at the end of the file

Changes to the "AmiTCP:db/interfaces" file:

* Insert the line
ppp0 DEV=DEVS:networks/ppp.device UNIT=0 IPTYPE=33 NOARP P2P

somewhere in the file.

* To start your connection type "startnet".

* To close your connection, interrupt all servers and clients, and
exit your protocol stack (type "stopnet"), which also drops the
DTR line (unless other programs have opened the device in shared
mode), so the modem might hang up depending on its configuration.

1.12 PPP.guide/NODE_INST_AMITCPFTC

Installation for AmiTCP/IP 4.2/4.3 commercial
===

First install AmiTCP/IP 4.2/4.3 using the Installer script that
comes with AmiTCP/IP. During the Installation of AmiTCP/IP 4.2/4.3,
choose the configuration style "PPP configuration".

Then answer the questions about your serial device driver (usually

PPP 12 / 48

"serial.device"), its unit number (usually 0) and the baud rate. This
baud rate must match the baud rate between computer and modem, NOT
necessarily the baud rate of your telephone line.

NOTE: ppp.device should work with any "serial.device" replacement
(e.g. "gvpser.device", "BaudBandit.device" etc.). However you should
not use "8n1.device", because I have received many reports that this
device may crash if used with ppp.device.

When asked about the MTU you should keep the value at the default of
1500 at this time, because this is the most compatible setting. You
can reconfigure later for a smaller number to improve efficiency.

Next if you want to use PPP’s builtin dialer, enter the file name of
the dial script you created earlier. Otherwise enter an empty string.

At the next option menu you can choose to enable or disable

Carrier Detect
(see

Carrier detect
)

Hardware-handshake (CTS/RTS)
(see

7-wire handshaking
)

no EOF-mode
(see

Diable serial device EOF mode
)

Use ODU
(see

Use OwnDevUnit.library
)

shared mode
(see

Open the serial device in shared mode
)

At this time it is recommended you only enable "Hardware-handshake"
and perhaps "CD", if you have a proper modem cable that connects the
"CD" signal, and if your modem is setup to transmit the "CD" signal
correctly. If you are in doubt about this do NOT enable CD.

After that install ppp.device:

* To install the evaluation version, choose one of the files
devs/ppp.device.000.eval (for 68000/68010) or
devs/ppp.device.020.eval (for 68020/68EC020 or higher) depending
on your processor type, and copy it to devs:networks/ppp.device.

* To install the registered version, choose one of the files
devs/ppp.device.000 (for 68000/68010) or devs/ppp.device.020 (for

PPP 13 / 48

68020/68EC020 or higher) (which are in a separate archive)
depending on your processor type, and copy it to
devs:networks/ppp.device. Then copy the keyfile you received from
me (PPP.key) to s:. The key file is your personal ID with your
name and serial number in it. Make sure that nobody has access to
it, particularly if you allow telnet or ftp dialins to your Amiga
from outside !

* To make the previous steps perfectly clear: The device must be
named ppp.device (not ppp.device.020 etc.) and it has to be
located in the directory devs:networks.

* Copy the contents of the bin/ directory to a location that is in
your path, preferably to AmiTCP:bin/.

* If your host requires PAP authentication, create a PAP password
file now. (See

PAP password file
).

* If your host requires CHAP authentication, create a CHAP password
file now. (See

CHAP password file
).

If you are using AmiTCP 4.2, then you should make the following
change to the ‘AmiTCP:bin/stopnet’ script. For AmiTCP 4.3 or higher
this is not required.

* Add the line
offline ppp.device 0

at the end of the file

* To start your connection type "startnet".

* To close your connection, interrupt all servers and clients, and
exit your protocol stack (type "stopnet"), which also drops the
DTR line (unless other programs have opened the device in shared
mode), so the modem might hang up depending on its configuration.

1.13 PPP.guide/NODE_INST_INETTTF

Installation for I-Net 225
==========================

First install I-Net 225 using the Installer script that comes with
I-Net 225. During the installation of I-Net 225 select "ppp.device" as
the device to use.

After that install ppp.device:

* The I-Net 225 Installer script already installs the 68000
evaluation version of ppp.device as part of the I-Net 225

PPP 14 / 48

installation. If you would like to use the 68020 evaluation
version copy the file devs/ppp.device.020.eval to
devs:networks/ppp.device.

* To install the registered version, choose one of the files
devs/ppp.device.000 (for 68000/68010) or devs/ppp.device.020 (for
68020/68EC020 or higher) (which are in a separate archive)
depending on your processor type, and copy it to
devs:networks/ppp.device. Then copy the keyfile you received from
me (PPP.key) to s:. The key file is your personal ID with your
name and serial number in it. Make sure that nobody has access to
it, particularly if you allow telnet or ftp dialins to your Amiga
from outside !

* To make the previous steps perfectly clear: The device must be
named ppp.device (not ppp.device.020 etc.) and it has to be
located in the directory devs:networks.

* Copy the contents of the bin/ directory to a location that is in
your path, preferably to Inet:c/.

* If your host requires PAP authentication, create a PAP password
file now. (See

PAP password file
).

* If your host requires CHAP authentication, create a CHAP password
file now. (See

CHAP password file
).

* Create a configuration file for the device. The name must be
ENV:SANA2/ppp0.config, where 0 is the unit number for ppp.device
(usually ‘0’ - this is NOT the unit number of your serial.device).
You should copy the file to ENVARC:SANA2/, too, to make the change
permanent. The overall file format is similar to the file format
used by the SLIP driver as described in the I-Net 225
documentation. For a list of all options see

Configuration
, but a

single line
serial.device 0 57600 0.0.0.0 7WIRE

probably gets you started. Three comments here:

- Replace serial device 0 with the device name and unit number
of your serial device.

NOTE: ppp.device should work with any "serial.device"
replacement (e.g. "gvpser.device", "BaudBandit.device" etc.).
However you should not use "8n1.device", because I have
received many reports that this device may crash if used with
ppp.device.

- Replace 57600 with the baud rate you want to use on your
serial port. Note: If you use a terminal program to dial up
your connection, then this speed MUST be identical to the
speed between computer and modem that you used to establish

PPP 15 / 48

the connection in the terminal program. DO NOT use a physical
modem line speed here such as 14400 or 28800.

- If you know your permanent IP number, replace 0.0.0.0 with
that number. If you do not know your IP number or if it is
assigned to you dynamically for each call, do not change
0.0.0.0. This tells ppp.device to ask the remote host for
your IP number each time the link is negotiated.

* To start your connection type "StartInet ppp online ppp.device".

* To close your connection, interrupt all servers and clients, and
exit your protocol stack (type "StopInet"), which also drops the
DTR line (unless other programs have opened the device in shared
mode), so the modem might hang up depending on its configuration.

1.14 PPP.guide/NODE_CONFIGURATION

Configuration

The configuration file (usually ‘ppp0.config’) can contain the
following options. All options marked with ‘(r)’ are only functional in
the registered version of the device. However you can still specify
them in the configuration file of the unregistered device version - in
which case they are ignored.

Note to users of AmiTCP/IP 4.2/4.3 (commercial): If you use the
default PPP installation, the configuration file ‘ppp0.config’ is
automatically generated by the ‘startnet’ script each time you start
AmiTCP/IP. This means that you should not add any options to the
‘ppp0.config’ file (because they are overwritten later). Instead add
any options to the line starting with ‘.def S2OPT’ in the ‘startnet’
script. You can also reconfigure AmiTCP by rerunning the
‘Config_AmiTCP’ utility to make any changes.

Here is a complete list of all options in AmigaDOS ReadArgs format
(i.e. ‘/N’ means the parameter is an integer, ‘/S’ means the keyword is
a switch, ‘/K’ means that the keyword must be given along with the
parameter):

SERNAME,SERUNIT/N,SERBAUD/N,IPSTR,CD=CARRIERDETECT/S,
7WIRE/S,MAXFAIL/K/N,MAXTERM/K/N,MAXCONFIG/K/N,TIMEOUT/K/N,
VJCMODE/K/N,MTU/K/N,USEODU/S,SERBUF/K/N,BADXONXOFF/S,ACCM/K,
NOEOFMODE/S,ONLINE/S,NOVJC/S,NOACPC/S,SAVE/K/N,NOID/S,LOG/K,
EXERCISE/K/N,LQR/K/N,STARTUP/K,PAP/K,CHAP/K,FCS/K/N,DIALSCRIPT/K,
SHARED/S,REMOTEIP/K,IGNOREFCS/S,NOREQ/S,IPCP/S,BROKENHDLC/S,
ATH/S,DIALWINDOW/K,EOFMODE/S,DNCP/S

7WIRE
7-wire handshaking

PPP 16 / 48

ACCM
Asynch Control Character Map (r)

ATH
Force modem to hang up

BADXONXOFF
Xon/Xoff compatibility mode (r)

BROKENHDLC
Workaround for HDLC bug

CD
Carrier detect

CHAP
CHAP password file name

DIALSCRIPT
Specify a dialer script

DIALWINDOW
Dial window specifications

DNCP
Enable DECnet protocol

EOFMODE
Enable serial device EOF mode

EXERCISE
Exercise link (r)

FCS
Change checksum type (r)

IGNOREFCS
Ignore incoming checksums

IPCP
Enable TCP/IP protocol

IPSTR
Local IP address

LOG
Enable event logging

LQR
Enable link quality reporting (r)

MAXCONFIG
Maximum configuration counter (r)

MAXFAIL
Maximum failure counter (r)

PPP 17 / 48

MAXTERM
Maximum terminate counter (r)

MTU
Maximum transfer unit (r)

NOACPC
Disable Addr/Ctl/Protocol compression (r ←↩

)

NOEOFMODE
Disable serial device EOF mode

NOID
Disable initial ID string

NOREQ
Suppress all requesters

NOVJC
Disable Van Jacobson compression (r)

ONLINE
Automatically go online

PAP
PAP password file name

REMOTEIP
Set the remote IP address

SAVE
Save intermediate startup packets

SERBAUD
Serial device baud rate

SERBUF
Serial device buffer size

SERNAME
Serial device name

SERUNIT
Serial device unit

SHARED
Open the serial device in shared mode

STARTUP
Send startup string

TIMEOUT
Timeout duration (r)

USEODU

PPP 18 / 48

Use OwnDevUnit.library

VJCMODE
Van Jacobson mode (r)

1.15 PPP.guide/NODE_7WIRE

7-wire handshaking
==================

7WIRE

tells ppp.device to enable 7-wire (RTS/CTS) handshaking mode in the
serial.device. This option is STRONGLY RECOMMENDED to avoid data loss.

If you for some reason decide to use software handshaking (Xon/Xoff)
instead of hardware handshaking (RTS/CTS) and you use the registered
version of ppp.device, make sure your asynchronous control character
map includes Xon and Xoff, i.e. specify the option BADXONXOFF or
include bits 17 and 19 in your ACCM bitmap.

The unregistered version of ppp.device always uses the full ACCM
bitmap, so you can use software handshaking without any further
preparation.

Make sure that your modem is set to the same handshaking
configuration that you specify to ppp.device. If you use 7WIRE, enable
hardware handshaking (AT&K3 on my Supra-V32bis). If you do NOT use
7WIRE, enable Xon/Xoff handshaking (AT&K4 on my Supra-V32bis).

1.16 PPP.guide/NODE_ACCM

Asynch Control Character Map (r)
================================

ACCM=56789ABC

tells ppp.device that your serial line cannot correctly transmit
some control characters. This option is similar to BADXONXOFF, but more
general. You must supply a 8-digit hexadecimal number that represents a
32-bit bitmask with a "1" for each character that your line cannot
transmit (i.e. that needs to be escaped).

Example: ACCM=00F00008 has bits 3,20,21,22,23 set, i.e. characters
3,20,21,22,23 and the corresponding characters with bit 7 set
(131,148,149,150,151) will be escaped. The default is ACCM=00000000.

Do not specify both options BADXONXOFF and ACCM, or the result will
be undefined.

PPP 19 / 48

In the evaluation version ACCM is not negotiated and therefore fixed
at FFFFFFFF, i.e. all control characters are always escaped.

1.17 PPP.guide/NODE_ATH

Force modem to hang up
======================

ATH

tells ppp.device to hang up your modem line when going offline.
This is done by sending "+++ATH" to the modem with proper timing.

1.18 PPP.guide/NODE_BADXONXOFF

Xon/Xoff compatibility mode (r)
===============================

BADXONXOFF

tells ppp.device that your serial line does not transmit Xon/Xoff
(ASCII 0x11,0x13) correctly - usually because software handshaking is
used somewhere on the line.

In this case ppp.device ‘escapes’ those characters (and the
corresponding characters with bit 7 set, i.e. 0x91, 0x93) as specified
in the HDLC standard.

This option should only be used if necessary, because it can slow
down the connection.

In the evaluation version ALL control characters are ALWAYS escaped,
i.e. the functionality of BADXONXOFF is always active.

1.19 PPP.guide/NODE_BROKENHDLC

Workaround for HDLC bug
=======================

BROKENHDLC

This option is used to work around a bug in the HDLC implementation
of some terminal servers (mostly by Annex). It only affects the
evaluation version of ppp.device.

If you are using the evaluation version of ppp.device and are

PPP 20 / 48

getting many checksum errors, there is a chance that the other side
does not handle its ACCM correctly. This effect is visible in PPP log
files if packet headers appear to start with "FF C0 21" instead of "FF
03 C0 21".

If you notice this, add BROKENHDLC to your ppp config. This option

requires an 8-bit clean line though, i.e. you cannot use it with
software handshaking.

1.20 PPP.guide/NODE_CD

Carrier detect
==============

CD

tells PPP.device to terminate the connection when the ‘carrier
detect’ line indicates that the modem has hung up. This requires a modem
cable that correctly transmits the CD signal and an appropriate modem
configuration. For my Supra-V32bis modem, the command to enable the CD
signal is AT&C1.

Another effect of this option is: If you use the builtin dialer
together with the option CD, the dialer only executes the dial script
if the CD line of your modem is not already active. Otherwise ppp.device
renegotiates the connection and goes online immediately. This has the
advantage that after you reset your Amiga you can reestablish your PPP
connection just by making ppp.device online - without redialing. Of
course this only works if your modem is configured not to hang up the
line when your Amiga is rebooted.

1.21 PPP.guide/NODE_CHAP

CHAP password file name
=======================

CHAP=filename

If your host requires you to use CHAP authentication, first create a
CHAP password file as described in

Installation
. Then add this option

to your configuration file. <filename> is the COMPLETE PATH NAME of
your CHAP password file.

If you allow remote logins into your Amiga, you should make sure
that your CHAP password file is not accessible to outside users.
Otherwise they might use your hostid and password to log into your
remote PPP host.

PPP 21 / 48

Note: In the evaluation version this option is also available, but
if you use it then ppp.device will time out and hang up your line after
15 minutes. There is no such limitation in the registered version.

CHAP file format
Format of the CHAP password file

1.22 PPP.guide/NODE_CHAPFILE

CHAP password file

If your host requires authentication using CHAP (‘Challenge
Handshake Authentication Protocol’), you first have to ask your site
administrator for

* <his_hostid>

* your <password> (sometimes called <secret>)

* <your_hostid>

Your site administrator has to add these items to his database. If
you have a Unix account on the same system, your <password> might be
identical to the <password> of your Unix account, and <your_hostid> is
probably identical to your login name.

<his_hostid> usually is the host name you are connecting to, but you
should ask your site administrator to find out the exact name. In one
case <his_hostid> was identical to the complete domain name of the
host, like pppserver.cs.foo.edu.

Create a CHAP password file that contains a single line:
his_hostid password your_hostid

i.e. <his_hostid>, <password> and <your_hostid> each have to be
separated by a single space. Do not use quotes to separate
<his_hostid>, <password> and <your_hostid>. If <his_hostid>, <password>
or <your_hostid> contain any unusual characters, like spaces or
unprintable characters, replace them by $4A where 4A is the hex ASCII
code of that character. A single $ must be written as $$ (no quotes !).

The file can contain multiple <his_hostid> <password> <your_hostid>
triples, each on a separate line. This can be useful if you use PPP to
connect to different hosts and need different <password>s. ppp.device
chooses the correct <his_hostid> <password> <your_hostid> triple by
matching the <his_hostid> value that is transmitted by the host during
CHAP authentication with one of the <his_hostid> <password>
<your_hostid> combinations. That’s why it is important that you ask
your administrator for the exact spelling of <his_hostid>. Otherwise
PPP will not find the correct CHAP file entry and reject negotiation.

PPP 22 / 48

The name and location of the CHAP password file does not matter. You
have to use the option CHAP=filename in your configuration file to tell
ppp.device about the CHAP filename. See

Configuration
for details.

1.23 PPP.guide/NODE_DIALSCRIPT

Use the builtin dialer
======================

DIALSCRIPT=filename

This option specifies a dialer script that will be executed before
the PPP negotiation starts. The script is executed whenever ppp.device
is made online while it is offline, with one exception: If you
specified the CD option ppp.device only executes the dialer script if
the CD line is not active, i.e. if the modem does not have a carrier.
The advantage of this is that if your Amiga has to be rebooted while
the PPP line is up, ppp.device will not try to execute the dial script
again if the CD line signals that the line is still up.

The format of dial scripts is similar to the one used by
gwcslip.device, a SLIP implementation by Graham Walter, but has some
additional commands. For a complete description see

The builtin dialer
.

1.24 PPP.guide/NODE_DIALWINDOW

Dial window specifications
==========================

DIALWINDOW=CON:20/50/400/160/Dialing.../INACTIVE

This option allows you to change the filename used for the dial
window. The default file name is the one given in the example above.

1.25 PPP.guide/NODE_DNCP

Enable DECnet protocol
======================

DNCP

PPP 23 / 48

Usually ppp.device is configured to establish a TCP/IP connection.
However if you want to use ppp.device for use with DECnet instead of
TCP/IP, you have to specify the option "DNCP". This disables TCP/IP and
enables DECnet instead.

If you want to use both TCP/IP and DECnet over the same ppp line you
have to add both of the options "DNCP" and "IPCP".

1.26 PPP.guide/NODE_EOFMODE

Enable serial device EOF mode
=============================

EOFMODE

tells ppp.device to use the serial.device EOF mode.

Usually it is more efficient to use EOF-mode, particularly if the CD
switch is NOT used, because this reduces the number of IORequests and
thus the overhead.

However some drivers of some multi-serial boards do not support
EOF-mode, so ppp.device usually turns EOF-mode off (unless it
recognizes one of the devices that are known to support EOF-mode, such
as "serial.device" unit 0, "gvpser.device" and "duart.device").

If you are using a device that supports EOF-mode but is not in the
above list you should add the option EOFMODE to improve the performance
of ppp.device.

1.27 PPP.guide/NODE_EXERCISE

Exercise link (r)
=================

EXERCISE=k

If this option is specified the device sends a "DiscardRequest",
i.e. a null message, whenever the SEND line has been idle for at least
<k> seconds. This can be used to prevent the other side from hanging up
the line due to inactivity. The request is not echoed by the other side
and should therefore not have any impact on the overall performance.

Example: If you want to exercise the link after 1 minute of
inactivity, specify EXERCISE=60.

Please see
Inactivity Timeout
for a more detailed discussion of this

topic.

PPP 24 / 48

In the evaluation version this option is not available.

1.28 PPP.guide/NODE_FCS

Change checksum size (r)
========================

FCS=size

This option can be used to negotiate a different checksum size for
the PPP link. Valid values for <size> are 0, 16 and 32. The default is
16.

Using an FCS size of 0 instead of 16 saves 2 bytes for most PPP
packets and can thus improve performance, but eliminates the extra
safety that the FCS check provides. On the other hand using an FCS size
of 32 increases safety, but reduces performance.

A value of 32 probably only makes sense on very noisy lines that are
not error-corrected.

A VALUE OF 0 SHOULD ONLY BE USED ON ERROR-CORRECTED LINES, E.G.
MODEM LINES THAT USE MNP OR V42.

In the evaluation version this option is not available.

1.29 PPP.guide/NODE_IGNOREFCS

Ignore incoming checksums
=========================

IGNOREFCS

tells PPP to ignore the checksums of incoming PPP packets after PPP
has been configured and has come online.

Normally PPP silently rejects all packets that have a bad checksum
(and relies on TCP-retries), as required by PPP specifications. However
some PPP terminal servers sometimes calculate incorrect checksums. The
option "IGNOREFCS" can be used to circumvent this bug.

Note that "IGNOREFCS" only becomes active after PPP has come online,
i.e. during the PPP configuration all checksums are always checked.
This is necessary to make sure that garbage left in the serial device
buffer is not incorrectly interpreted as a PPP packet.

Warning: You should only use this option on error-corrected (V.42 or
MNP) lines, and only if "PPPStats" shows you that you get many checksum

PPP 25 / 48

errors. This option is meant as a workaround for bugs in some terminal
servers (apparently some Annex models), NOT as a means to increase
performance in any way.

1.30 PPP.guide/NODE_IPCP

Enable TCP/IP protocol
======================

IPCP

Usually ppp.device is configured to establish a TCP/IP connection as
default. You do not normally need the option "IPCP" to enable TCP/IP.

However if you want to use DECnet you can override this default by
specifying "DNCP". This enables DECnet and disables TCP/IP.

If you want to use both TCP/IP and DECnet over the same ppp line you
have to add both of the options "DNCP" and "IPCP". This is the only
case where you need the option "IPCP".

1.31 PPP.guide/NODE_IPSTR

Local IP address
================

IPSTR=123.45.67.89

specifies your Amiga’s local IP address if you know it. This is NOT
the IP address of the host you are connecting to.

If you do not know your local IP address, or if you are dynamically
assigned a new IP address for each connection, you MUST specify 0.0.0.0
here.

If this option is not specified the default is 0.0.0.0.

1.32 PPP.guide/NODE_LOG

Enable event logging
====================

LOG=string

enables event logging.

To display the logged messages you must run the program "ppplog" in

PPP 26 / 48

its own shell window. The format of string can look like this (example):
10S20G30

The first integer (10 in the example) specifies the overall logging
level. This value must be given. This number can be followed by zero
or more instances of <character><integer> ("S20" and "G30" in the
example). These substrings change the logging level for specific types
of messages only. For those types this overrides the overall settings
given by the first parameter. Currently defined are:

G
general messages

S
messages related to SANA2 commands

L
messages related to the LCP automaton

P
messages related to the IPCP automaton

I
messages related to IP packets

Q
messages related to link quality monitoring

A
messages related to the PAP automaton

C
messages related to the CHAP automaton

Logging level can be one of:

0
No logging

10
log errors only

20
log errors, warnings and informational message from the peer

30
log all of the above plus external events such as on/offline

40
log all of the above plus all internal events (creates a large
number of messages)

50
log all of the above plus create a hexdump of all received and
transmitted packets

So the example sets logging for "S" to 20 and for "G" to 30, and for
all other types ("L", "P", "I", "Q", "A" and "C") to 10.

PPP 27 / 48

Default: 0 for all types. When sending problem reports to the
author, please use LOG=50.

1.33 PPP.guide/NODE_LQR

Enable link quality reporting (r)
=================================

LQR=k

This option activates Link Quality Monitoring. It causes both sides
of the link to exchange packets every <k> seconds that tell each other
how many packets have been lost or damaged on the line. This
information can be used to determine the reasons of transmission
problems.

In the evaluation version this option is not available.

1.34 PPP.guide/NODE_MAXCONFIG

Maximum configuration counter (r)
=================================

MAXCONFIG=10

Changes the ‘Max-Configure’ value specified in the PPP RFCs. This
is the maximum number of Config-Req packets sent before ppp.device
gives up and assumes that the peer is unable to respond. Usually there
is no need to change this value. The default is 10.

In the evaluation version of ppp.device this option is not
functional and the value is fixed at 10.

1.35 PPP.guide/NODE_MAXFAIL

Maximum failure counter (r)
===========================

MAXFAIL=5

Changes the ‘Max-Failure" value specified in the PPP RFCs. This is
the maximum number of Config-Nak packets sent before ppp.device gives
up and assumes that the configuration will never converge. Usually
there is no need to change this value. The default is 5.

In the evaluation version of ppp.device this option is not

PPP 28 / 48

functional and the value is fixed at 5.

1.36 PPP.guide/NODE_MAXTERM

Maximum terminate counter (r)
=============================

MAXTERM=3

Changes the ‘Max-Terminate’ value specified in the PPP RFCs. This
is the maximum number of Terminate-Req packets sent before ppp.device
gives up and assumes that the peer is unable to respond. Usually there
is no need to change this value. The default is 3.

In the evaluation version of ppp.device this option is not
functional and the value is fixed at 3.

1.37 PPP.guide/NODE_MTU

Maximum transfer unit (r)
=========================

MTU=1500

changes the Maximum Transfer Unit.

The Maximum Transfer Unit (MTU) is the maximum packet size that can
be transferred over the PPP link. The default is 1500.

It is often useful to reduce this number to improve interactive
response time, particularly if you want to run FTP downloads and telnet
sessions in parallel.

There are two ways to reduce this number:

* MTU=123

where 123 is the desired MTU value. This value MUST be less than
or equal to 1500. This forces the connection to the specified
value in both directions and causes ppp.device to give up if the
peer does not support that value.

* MTU=0

causes ppp.device to wait for the peer to make a suggestion about
the MTU value, and then use that value for both directions of the
link. This is a good choice if the remote PPP host ‘knows’ which
MTU is best.

A technical note: This option is not completely RFC-compliant.

PPP 29 / 48

(It is however to some degree similar to the obsolete "listen"
state described in RFC 1171.)

DO NOT USE ‘MTU=0’ ON BOTH ENDS OF THE SAME CONNECTION OR YOUR
CONNECTION MAY APPEAR LOCKED UP AND WILL EVENTUALLY TIME OUT.

Another technical note: There is a reason why this option cannot be
implemented on the Amiga exactly as specified in the PPP RFCs: The
SANA-II specs require MTU to be identical for both directions of a
link, whereas PPP negotiates the MTU values for both directions
separately and independently.

In the evaluation version of ppp.device this option is not
functional and the MTU value is fixed at 1500.

1.38 PPP.guide/NODE_NOACPC

Disable Addr/Ctl/Protocol compression (r)
===

NOACPC

disables Address/Control field compression and Protocol field
compression. This is probably only useful if the implementation of
those compression methods at your peer is buggy.

In the evaluation version Address/Control field compression and
Protocol field compression are not implemented, so the option NOACPC is
always active.

1.39 PPP.guide/NODE_NOEOFMODE

Disable serial device EOF mode
==============================

NOEOFMODE

tells ppp.device NOT to use the serial.device EOF mode.

Usually it is more efficient to use EOF-mode, particularly if the CD
switch is NOT used, because this reduces the number of IORequests and
thus the overhead.

However some drivers of some multi-serial boards do not support
EOF-mode, so ppp.device usually turns EOF-mode off (unless it
recognizes one of the devices that are known to support EOF-mode, such
as "serial.device" unit 0, "gvpser.device" and "duart.device").

The only case in which you have to use the option NOEOFMODE is if
you replace one of the above devices with a different third-party

PPP 30 / 48

device that does not support EOF-mode, but do not change the name of
the device.

1.40 PPP.guide/NODE_NOID

Disable initial ID string
=========================

NOID

Normally ppp.device sends an LCP-Identification to the remote host
before sending the first ConfigRequest.

Specifying the ‘NOID’ switch suppresses this identification message
for compatibility to buggy PPP software. If you have problems
connecting to your host you might want to try this switch, even though
it should not be necessary for correctly implemented PPP hosts.

1.41 PPP.guide/NODE_NOREQ

Suppress all requesters
=======================

NOREQ

Usually ppp.device displays requesters if one of the configuration
files has an invalid format, if the underlying device cannot be opened,
or if the underlying device unit is locked.

The ‘NOREQ’ switch suppresses these requesters, i.e. ppp.device
returns an error code to the calling program immediately.

There is still one requester that cannot be suppressed: It is the
requester that appears when the configuration file ‘ppp0.config’ has an
invalid format. The option ‘NOREQ’ does not affect this requester,
because the requester indicates that the configuration file (including
the ‘NOREQ’ option) could not be parsed.

1.42 PPP.guide/NODE_NOVJC

Disable Van Jacobson compression (r)
====================================

NOVJC

disables Van Jacobson TCP compression. This is probably only useful
if the Van Jacobson implementation at your peer is buggy, or if you

PPP 31 / 48

have a VERY fast serial line and a slow CPU.

In the evaluation version Van Jacobson TCP compression is not
implemented, so the option NOVJC is always active.

1.43 PPP.guide/NODE_ONLINE

Automatically go online
=======================

ONLINE

tells ppp.device to go online after initialization even if no
explicit online command is given. This option might be required for
Envoy, because the Envoy versions I have seen so far do not recognize
that a device is offline and keep flooding it with CMD_READ commands
:-(.

For other protocol stacks (AmiTCP/IP, AS225, I225) this option
should not be used.

1.44 PPP.guide/NODE_PAP

PAP password file name
======================

PAP=filename,hostid

If your host requires you to use PAP authentication, first create a
PAP password file as described in

Installation
. Then add this option to

your configuration file. <filename> is the COMPLETE PATH NAME of your
PAP password file. <hostid> is the host id that your remote host
administrator assigned to you. In most cases this is your login name.

PPP.device uses <hostid> to look up the corresponding password in
your PAP password file. The format of the <hostid> string is the same
as that of <string> for the STARTUP option (see

STARTUP
). Both arguments

must be separated by a comma (’,’).

If you allow remote logins into your Amiga, you should make sure
that your PAP password file is not accessible to outside users.
Otherwise they might use your hostid and password to log into your
remote PPP host.

Note: In the evaluation version this option is also available, but
if you use it then ppp.device will time out and hang up your line after

PPP 32 / 48

15 minutes. There is no such limitation in the registered version.

PAP file format
Format of the PAP password file

1.45 PPP.guide/NODE_PAPFILE

PAP password file

If your host requires authentication using PAP (‘Password
Authentication Protocol’), you first have to ask your site
administrator for

* your <hostid>

* your <password>

Your site administrator has to add these items to his database. If
you have a Unix account on the same system, <hostid> and <password>
MIGHT BE identical to the <username> and <password> of your Unix
account.

Create a PAP password file that contains a single line:
hostid password

i.e. <hostid> and <password> have to be separated by a single space.
Do not use quotes to separate <hostid> and <password>. If <hostid> or
<password> contain any unusual characters, like spaces or unprintable
characters, replace them by $4A where 4A is the hex ASCII code of that
character. A single $ must be written as $$ (no quotes !).

The file can contain multiple <hostid> <password> pairs, each on a
separate line. This can be useful if you use PPP to connect to
different hosts and need different <hostid> <password> combination.
ppp.device chooses the correct <hostid> <password> pair by matching the
<hostid> value from the PAP option in your configuration files with one
of the <hostid> <password> combinations.

The name and location of the PAP password file does not matter. You
have to use the option PAP=filename,hostid in your configuration file
to tell ppp.device about the PAP filename. See

Configuration
for

details.

1.46 PPP.guide/NODE_REMOTEIP

PPP 33 / 48

Set the remote IP address
=========================

REMOTEIP=123.45.67.89

This option lets you specify the IP address of the remote PPP host.
The value specified here is only used if the remote PPP host asks for
it, i.e. if it tells ppp.device that its IP address is 0.0.0.0.

If your remote PPP host is run by a PPP service provider it is
likely that the host knows its own address, so you do not have to use
this option. If you use this option anyway, it is ignored.

1.47 PPP.guide/NODE_SAVE

Save intermediate startup packets
=================================

SAVE=10

Some ppp hosts start transmitting packets IMMEDIATELY after the IP
connection has been established. The problem with this behavior is that
the local protocol stack (AmiTCP/IP or whatever) has not been
initialized at that time and has therefore not sent its first CMD_READ
request.

This means that according to the SANA-II specifications those early
packets would be dropped - but although officially correct, in this
case this behavior is not desirable...

To avoid this problem you can tell ppp.device to save at most <max>
incoming packets for CMD_READ requests that arrive later by using the
option ‘SAVE=<max>’.

This option should ONLY be used if PPP log messages tell you that
packets are dropped during initialization. Currently only IP packets
can be saved. Default: max=0.

Warning: this option is completely untested right now and might
crash your machine. Unless your PPP host has a very unusual setup you
do not need this option and should not use it.

1.48 PPP.guide/NODE_SERBAUD

Serial device baud rate
=======================

SERBAUD=57600

PPP 34 / 48

specifies the baud rate for the serial port. This number MUST match
the baud rate you used in your terminal program or dialing script to
establish the dialup connection. If you use the builtin dialer this
speed can be set to any value that your modem supports.

If this option is not specified the default is 9600 baud.

Note: This number is usually NOT identical to the speed of your
phone line. Most modern modems use data compression (MNP-5 or V.42bis)
on the phone line, so the speed between computer and modem should be at
least twice as high as the physical line speed.

Example: If your modem supports V32bis (up to 14400 Baud), your
computer-to-modem-speed should be 38400, 57600 or 115200 Baud. This is
the value you should use for SERBAUD and in your terminal program if
you use one to setup the connection. You should first read the manual
of your modem and make sure that your modem supports that particular
speed for its RS-232 line.

1.49 PPP.guide/NODE_SERBUF

Serial device buffer size
=========================

SERBUF=16384

changes the size of the serial.device receive buffer. The default is
16384 Bytes = 16 kB. You should not use very large values here, because
the PPP and TCP/IP protocols heavily depend on various timeouts. Large
serial buffers can defeat the purpose of timeouts, because they can
delay the delivery of packets. It is usually better to "drop" a packet
because of a full serial buffer, than to deliver a packet after a long
delay.

1.50 PPP.guide/NODE_SERNAME

Serial device name
==================

SERNAME=serial.device

specifies the name of your serial device. For third-party boards
this may for instance be gvpser.device.

If this option is not specified the default is "serial.device".

NOTE: ppp.device should work with any "serial.device" replacement
(e.g. "gvpser.device", "BaudBandit.device" etc.). However you should
not use "8n1.device", because I have received many reports that this
device may crash if used with ppp.device.

PPP 35 / 48

1.51 PPP.guide/NODE_SERUNIT

Serial device unit
==================

SERUNIT=0

specifies the unit number for your serial device (physical port
number). This number has NOTHING to do with the PPP unit number. Unless
you want to use more than one PPP link at a time the PPP unit number
can always be 0. However the serial device unit number as specified
with this option must be set to the correct number of your serial port
(0 for the builtin Amiga serial port).

If this option is not specified the default is 0.

1.52 PPP.guide/NODE_SHARED

Open the serial device in shared mode
=====================================

SHARED

If this option is used, ppp.device opens the serial device in shared
mode instead of exclusive mode. However keep in mind that only one
program can read data from a serial line at any time, so you cannot
have two programs (e.g. a terminal program and ppp.device) both read
data from the same serial line and expect this kind of setup to work.

The solution for this is to use only programs that support
OwnDevUnit.library (a freely distributable library that controls access
to device units) together with ppp.device on the same serial line, and
to use the USEODU option with ppp.device.

If SHARED is used in combination with USEODU, it may be possible to
have ppp.device "steal" a serial line from a getty-like
OwnDevUnit-aware program that owns that serial line.

1.53 PPP.guide/NODE_STARTUP

Send startup string
===================

STARTUP=string

Note: This option has really been made obsolete by the new builtin

PPP 36 / 48

dialer. It is still there for backwards compatibility, but I recommend
you use the builtin dialer instead of STARTUP.

You can use this option to send <string> to the remote PPP host
immediately BEFORE the first configuration packets are exchanged.
Usually you do not need this option, because it is recommended that you
first establish the link manually, using the builtin dialer or by some
Rexx/Shell script and then startup ppp.device.

However I have been told that some PPP hosts have VERY short
timeouts that do not give you enough time to start PPP once you have
selected PPP mode on your host. If this is true for your setup, do not
send the final startup string (password etc.) in your script, but
specify it with this option instead. This may prevent your host from
timing out once the connection has been started.

Format of <string>: You can use any ASCII characters with one
exception: "$xx" specifies a character by its hex code, e.g. "$0D"
means <carriage return>. If you need the dollar sign ("$") in your
startup string, type "$$".

1.54 PPP.guide/NODE_TIMEOUT

Timeout duration (r)
====================

TIMEOUT=3

Changes the ‘Restart Timer’ value specified in the PPP RFCs. This
is the timeout in number of seconds between subsequent configuration or
termination packets. If you have a very fast link you might want to
reduce this value to 2 or 1 to speed up the configuration process a
little bit.

In the evaluation version of ppp.device this option is not
functional and the value is fixed at 3.

1.55 PPP.guide/NODE_USEODU

Use OwnDevUnit.library
======================

USEODU

tells ppp.device to use OwnDevUnit.library (not included in this
archive) to negotiate access to the required serial.device unit.

If SHARED is used in combination with USEODU, it may be possible to
have ppp.device "steal" a serial line from a getty-like
OwnDevUnit-aware program that owns that serial line.

PPP 37 / 48

1.56 PPP.guide/NODE_VJCMODE

Van Jacobson Mode (r)
=====================

VJCMODE=2

changes the default format of the Van Jacobson configuration option.
There are three possible values:

* 0 to use the old RFC-1172 compliant format (4 bytes, type=0x37).

* 1 to use an obsolete, intermediate format (4 bytes, type=0x2d).

* 2 to use the new RFC-1332 compliant format (6 bytes, type=0x2d).
This is the default.

If you notice that Van Jacobson compression is not negotiated, or if
programs like telnet and ftp only work with Van Jacobson compression
disabled, you might want to try settings 0 or 1. They are used to make
ppp.device compatible to some older, buggy PPP software packages.

This option only affects outgoing Config-Requests. For incoming
Config-Requests all formats (0, 1 and 2) are always automatically
accepted.

In the evaluation version Van Jacobson compression is not
implemented at all, so this option is not functional.

1.57 PPP.guide/NODE_DIALING

The builtin dialer

The builtin dialer can be used to dial up a PPP line before PPP
option negotiation starts. To use the dialer create a text file that
contains a list of dialer commands and include the option
DIALSCRIPT=textfilename in your PPP configuration file.

When PPP starts dialing, it opens a window to display error messages
and incoming data. If ‘echo mode’ is switched on, PPP also prints each
line of the dial script when it is executed.

The dial script must contain a list of one or more of the following
commands. Each command must be given on a separate line. Lines that
start with a ‘#’ as the first character are treated as comments (i.e.
are ignored).

List of valid commands:

PPP 38 / 48

ECHO ON
switches ‘echo mode’ on, i.e. each command in the dialer script is
echoed when it is executed. Default: ‘echo mode’ is off.

ECHO OFF
switches ‘echo mode’off.

TIMEOUT ticks
specifies the maximum amount of time (in ticks) that PPP is
supposed to wait for a response from the serial line before a
timeout occurs. Default: 500 (= 10 seconds).

SEND "textstring"
sends textstring to the modem, and adds a ‘Carriage Return’
character, i.e. ASCII 13. textstring may not contain any control
characters or double quotes. This command is usually used to send
commands to the modem or to an intelligent terminal server.

SENDBIN "textstring"
identical to the SEND command with two exception: No ‘Carriage
Return’ is added at the end of the string, and the string may
contain control characters: to send hex 0xab, include $AB in your
string. This command is usually used if you need to send some
"funny" caracters to a terminal server that the SEND command does
not allow you to send.

WAIT "textstring"
Waits until textstring has been received from the serial line, or
until a timeout occurs, or until one of the strings specified by
the ABORT or REDIAL commands has been received. This command is
case-sensitive, i.e. if you wait for "test", this command will not
recognize "Test" or "TEST" as equivalent. If you have to wait for
a "Password" or "Username" prompt it is best to just wait for
"assword" or "sername".

DELAY ticks
waits for the specified number of ticks.

ABORT "abortstring1","abortstring2",...
specifies which responses from the modem should abort the dial
script and make PPP offline when WAITing for a string from the
modem. Default: "BUSY", "NO CARRIER", "NO DIAL TONE" and "NO
ANSWER".

REDIAL "redialstring1","redialstring2",...
specifies which responses from the modem should cause PPP to
redial. PPP does not have any knowledge about the logical state of
your modem or of the connection, so "redialing" in this context
just means that PPP executes the dial script again from the
beginning. This is most likely what you want if the modem returns
a "BUSY" or "NO CARRIER" message. Default: (empty), i.e. PPP
never redials.

REDIALDELAY ticks
specifies the delay in ticks that PPP is supposed to wait before
dialing again. Default: 1500 (= 30 seconds).

PPP 39 / 48

SERMODE mode
changes the serial device mode. Valid values for mode are "7E1",
"7E2", "7O1", "7O2", "8N1" and "8N2".

Example dialscript:

ECHO ON
TIMEOUT 1500
REDIAL "BUSY"
SEND "AAT&D0DT5551234"
WAIT "CONNECT"
WAIT "sername"
SEND "myusername"
WAIT "assword"
SEND "mypassword"
WAIT "CS>"
SEND "ppp"
WAIT "MTU"

1.58 PPP.guide/NODE_INACTIVITY

Inactivity Timeout

First of all, the Amiga ppp.device NEVER causes an inactivity timeout
by itself. If you notice that the connection is terminated due to
inactivity it is always caused by the remote host.

Many PPP hosts, PPP server programs, terminal servers etc. have
builtin functions that terminate the connection when the link has been
inactive for some amount of time. This is done in order to prevent
users from occupying valuable resources (modems :-)) when they do not
really use them. There are usually ways to avoid this effect by having
your Amiga "simulate" activity in certain intervals. Some of these
techniques are listed below.

Note: The following description is NOT intended as a hint how to
violate the regulations of your Internet access provider. Although
there may be legitimate reasons for simulating network events to
prevent inactivity timeouts, some Internet access providers have
regulations that consider those techniques "net abuse" and expressively
forbid them. In this case you MUST comply with those regulations, or
choose a different Internet access provider. Personally I do not
advocate or recommend any of the techniques given below and will not be
responsible if they violate any regulations of your Internet access
provider. You should get the permission of your Internet access
provider before using one of the following techniques.

Here are some strategies to prevent inactivity timeouts. The problem
is that different hosts have different ways of recognizing inactivity,
so not all strategies will work on all hosts - you have to experiment.

1. Use the option "EXERCISE=seconds" in your ppp0.config file. See

PPP 40 / 48

above for details. This option sends "DiscardRequest" PPP packets
to your PPP host every <seconds> seconds. This requires very little
system resources and should not slow down your connection at all,
because exercise packets are only transmitted when the link is
otherwise idle. The disadvantage is that those exercise packets are
swallowed by the PPP software and do not make it to the protocol
stack of your PPP host. This means that you will fool terminal
servers, but not intelligent PPP software. So if it is the PPP
software on your host that causes the timeout (and not the
terminal server), this option might not work. Also this option
does not work in the evaluation version of ppp.device.

2. Another strategy (thanks to Stefan G. Berg for the suggestion):
Use the "ping" command in delayed-loop-mode like this:

ping -i seconds 123.45.67.89
Where <seconds> is the number of seconds between consecutive polls
and 123.45.67.89 must be replaced by the IP address of SOME
machine reachable by your PPP host. This has the advantage that it
creates real IP packets (ICMP, to be precise) and thus has a
greater chance of fooling your host’s PPP software. The
disadvantange is that the request is echoed (slowing down long
downloads) and that the remote host is "ping"ed even if you are
using the link, i.e. this technique does not adapt to the load of
your link.

3. Some PPP packages only take TCP (and sometimes UDP) packets into
account when calculating inactivity time, not ICMP packets, so the
previous approach might not always work. Here is yet another
strategy: Use the program "letnet" in a delayed loop to create a
TCP connection every once in a while, e.g. to get the remote system
time. Example script:

lab start
letnet 123.45.67.89 37 >nil:
wait 600 secs
skip back start

You have to replace the IP number and the time by values you need.
The number "37" represents the port for the "time" service and
should not be changed. This strategy has a slightly better chance
of preventing inactivity timeouts, but requires even more
bandwidth of your PPP link.

1.59 PPP.guide/NODE_RESTRICTIONS

Restrictions

Here is a list of features that could, but need not be implemented
in a PPP driver and are not supported by the current PPP version yet.
First a list of those that I might implement in a future version of
ppp.device for registered users, given enough time.

* A better dialer that supports features like dialing multiple
numbers and has better modem control.

PPP 41 / 48

* Reliable Transmission Mode (RFC 1663). For this I need a copy of
the ISO 7776 and ISO 3309 documents. If you have access to one,
please let me know. Right now I cannot implement this option.

* Support for PPP over ISDN (RFC 1618), particularly some native
support for raw PPP over a B channel. Since I do not have access
to ISDN myself, I need your feedback on this. If ppp.device already
works on your ISDN setup, please tell me. If not, please try to
find out how your PPP host has configured PPP over ISDN. There
seems to be more than one standard around...

* Intelligent attempts to avoid loops during option negotiation. At
this time only the MaxConfig counter is used to cancel the
configuration negotiation after some time. There is no "per-option"
loop detection yet.

* "crossed connection" detection on out-of-sync RCA events

* Real data compression. At this time the standard for PPP data
compression has not been finalized yet, and it will probably take
at least another couple of month until a draft standard becomes
available. Then compression will probably be implemented using a
general "Compression Control Protocol" (CCP), and one or more
individual compression protocols. Newsflash: Because of patent
claims on parts of the compression algorithms, PPP compression
will probably not become available for quite a while...

* A more "intelligent" logging mechanism. PPP should "know" about
the most frequent IP packet types and port numbers and create log
entries for them that are easier to read.

Here is a list of features that are specified in various RFCs, but
are not supported by the current PPP version, and are not likely to be
implemented in the near future - or at all.

However if someone really needs one of those features and agrees to
beta-test it for me, I might just implement it...

* Using the local machine as a PPP host that recognizes incoming
calls and dynamically assigns IP numbers to the remote (calling)
machine.

* Network Control Protocols other than IPCP and DNCP. At the moment
IP and DECnet are the only supported protocol stacks. Support for
other protocol stacks (ISO-OSI, AppleTalk, Novell IXP) is not
implemented yet. If you know about a protocol stack for Amiga
that implements one of those protocols and uses SANA-II calling
conventions, please tell me !

* "Passive" option, i.e. option to stay on the line and wait for
incoming configuration requests (might be useful for server
operation).

* MTU values higher than 1500.

* RFC 1570 extensions, like "self describing padding", "callback",
"compound frames", active "time remaining"

PPP 42 / 48

* MIB-II/SNMP support. This is a biggie and would require a lot of
support in AmiTCP/IP to be useful.

* Options that still have draft status: reliable transmission mode,
multilink mode, support for bridging, Kerberos V4/V5 authentication
(anyone care to write a "des.library" and "kerberosv4.library" ?),
"Callback Control Protocol".

Some of the implemented options are either untested, or have not
been tested thoroughly yet, because the software available to me did not
support them properly:

* SANA-II Rev 2.0 RejectProtocol callback for multiple protocol
stacks

* SAVE option

* FCS alternatives

* robustness of PAP and CHAP, e.g. escape sequences in names,
behavior after Nak etc.

* some commands of the dialer

1.60 PPP.guide/NODE_UTILITY

Utility programs

The following utility programs are included in the PPP archive:

PPPInfo
Display information about a ←↩

PPP unit

PPPStats
Display statistics for a PPP ←↩

unit

PPPLQR
Display Link Quality Report

PPPLog
Log PPP events

These programs directly access the PPP internal data structures.

As these structures are subject to change for each version, the
programs will usually work with exactly one version of ppp.device only.

If you upgrade ppp.device please check for new versions of these

PPP 43 / 48

utility programs, too. If you attempt to start one of these programs
with a different version of ppp.device, an error message <program>
version and ppp.device version do not match will appear.

1.61 PPP.guide/NODE_PPPINFO

PPPInfo
=======

This program displays some information about a PPP unit, such as the
configuration status and a list of active options.

Usage: PPPInfo unit

<unit> must be given and specifies the PPP unit number.

1.62 PPP.guide/NODE_PPPSTATS

PPPStats
========

This program displays the statistics about a PPP unit, i.e. the
amount of received and transmitted data and a breakdown of all received
and transmitted packets by type.

Usage: PPPStats unit

<unit> must be given and specifies the PPP unit number.

1.63 PPP.guide/NODE_PPPLQR

PPPLQR
======

This program displays the current Link Quality Monitoring statistics
about a PPP unit, i.e. the number of packets that were lost or damaged
on the link.

Usage: PPPLQR unit

<unit> must be given and specifies the PPP unit number.

The output of this program is either a link quality report or the
message PPP unit %ld has not received any Link Quality Reports yet..

This message can appear

PPP 44 / 48

* if the number of link quality reports received so far is
insufficient to build statistics.

* if the remote machine does not send any LQR packets (e.g. because
it does not support LQR).

* if you have not specified option ‘LQR’ in your configuration file.

* if you are using the evaluation version of ppp.device.

1.64 PPP.guide/NODE_PPPLOG

PPPLog
======

This program prints log messages of all active PPP unit either to
stdout, or to the builitin serial port.

Usage: PPPLog [SERIAL]

Usually PPPLog prints all log messages to stdout, which is the
current console window unless you redirect it to a file using
‘>filename’.

If you specify the keyword SERIAL all output is sent to the builtin
serial port instead by using ‘kprintf’. This output can be redirected
by other programs, like ‘Sushi’.

Warning: If you specify the keyword SERIAL and do not have any
equipment connected to your builtin serial port (and are not running
any redirection program) your machine may crash !

1.65 PPP.guide/NODE_HISTORY

History

V1.45 (March 9th, 1996, 5th public release)

* fixed a chance for trashed memory

V1.44 (February 17th, 1996, 4th public release)

* Minor changes only

V1.43 (January 23th, 1996, limited release)

* Minor changes only

V1.42 (January 18th, 1996, limited release)

* Another fix to offline-signalling when the modem hangs up.

PPP 45 / 48

V1.41 (January 11th, 1996, limited release)

* ppp.device now recognizes an offline state (modem hanging up)
even if the protocol stack does not send any packets to
ppp.device. This only works if you are using the CD option
in your ppp configuration.

* CHAP/PAP now contains some support for the non-standard
authentication used by some Win-NT servers: ppp.device
attempts to dynamically switch the Win-NT server back to
standard PAP/CHAP.

* The demo version of ppp.device now contains limited support
for CHAP/PAP: You can connect using PAP/CHAP, but ppp.device
hangs up the line after 15 minutes.

* The option MTU=0 works now (reg. version only).

* The functionality of BROKENHDLC has been extended to work
with some broken Annex terminal servers (this affects the
demo version only).

* New option "DIALWINDOW=CON:whatever" to specify the AmigaDOS
file name of the dial window.

* New option "ATH" to forcefully hang up the modem line ("+++
ATH") when going offline.

* Several minor bug fixes

* Empty lines at the end of the dial script no longer cause
error messages.

* Earlier versions could crash under certain circumstances if
commands were sent to them while they were offline - fixed.

* ppp.device now disables EOF-mode automatically for all
devices except the few which support it.

* Discontinued support for AmiTCP V2.3 and V3.0beta.

V1.31 (January 8th, 1995, limited release)

* Fixed a bug in software handshaking

* Implemented new dialer command "SERMODE" to change the serial
port settings in the dial script.

V1.30 (January 4th, 1995, 3rd public release)

* Added support for AmiTCP/IP 4.0 (demo) and AmiTCP/IP 4.1
(commercial).

* Added support for EnlanDFS (DECnet).

* Fixed a bug in reading the configuration file.

* Renamed "PPPConfigAmiTCP" to "PPPConfigAmiTCP30b" since it is
only required for AmiTCP/IP 3.0b.

PPP 46 / 48

V1.25 (October 19th, 1994, limited release)

* fixed a bug in IPCP configuration that (together with a buggy
PPP implementation on the other side) could lead to infinite
negotiation cycles.

V1.23 (October 13th, 1994, 2nd public release)
no changes

V1.22 (October 6th, 1994, limited release)

* option VJCMODE now works again

V1.21 (September 12th, 1994, limited release)

* added new option IGNOREFCS to ignore the checksums of
incoming packets

* added new option NOREQ to suppress all requesters

V1.20 (August 30th, 1994, limited release)

* fixed a bug in IP address negotiation

* added new option REMOTEIP to actively set the IP address of
the remote PPP host

* zero PPP checksums are now silently accepted for compatibility
with buggy PPP hosts...

V1.19 (August 18th, 1994, limited release)

* fixed a bug that could crash the machine if a low-memory
situation occured while ppp.device was online, but not opened.

* added the dialer commands REDIAL and REDIALDELAY

* removed character NUL from the character map in option
BADXONXOFF because it does not appear to be necessary for
correct software handshaking, but would slow down the
connection significantly.

V1.18 (August 6th, 1994, limited release)

* fixed a bug in PAP and CHAP.

* fixed a bug in dialer related to abortargs handling

* fixed a bug that could sometimes cause responses during
option negotiation to deviate from specifications.

V1.17 (July 18th, 1994, limited release)

* implemented SHARED keyword to be used in combination with ODU

* implemented a dialer that is very similar to the one in Graham
Walter’s gwcslip.device. Thanks for the source code, Graham !

* ppp.device now flushes the modem read buffer before going
online. This is supposed to remove stale PPP packets from
the input queue and prevent some race conditions in the LCP
FSM when a connection is reconfigured after resetting the
Amiga.

PPP 47 / 48

* fixed a bug in PAP state machine that sometimes prevented
proper reconfiguration after a reset.

V1.14 (May 16th, 1994, limited release)

* fixed a bug related to incoming 32-bit FCS checksums

* added PPPConfigAmiTCP23 to the distribution

* yet another fix to the IPCP ADDRESSES problem

V1.11 (April 22th, 1994, limited release)

* fixed another bug in the handling of obsolete IPCP ADDRESSES
options.

V1.10 (April 21th, 1994, limited release)

* added option FCS to the registered version to allow
negotiation of different checksums.

* added option CHAP (Challenge Handshake Authentication
Protocol) to the registered version.

* fixed the bug in PPPInfo that the number of V/J transmit
slots was displayed incorrectly.

* fixed a bug in the handling of obsolete IPCP ADDRESSES
options.

* PPPInfo now displays the FCS sizes.

V1.0 (April 14th, 1994, 1st public release)
initial release

1.66 PPP.guide/NODE_ACKNOWLEDGEMENTS

Acknowledgements

Thank you very much to

* the beta testers Stefan G. Berg, Josh Goldsmith, Greg Jones, Luigi
Mattera and Jukka Partanen.

* Ignatio Souvatzis for some useful suggestions and his nice PPP FAQ
list.

* the AmiTCP/IP development group for their outstanding TCP/IP
protocol stack AmiTCP/IP.

* Graham Walter for sending me the source code and documentation of
his gwcslip dialer.

* Kent Polk for information on configuring ppp.device for AS-225.

PPP 48 / 48

* all users who decide to register ppp.device.

	PPP
	PPP.guide
	PPP.guide/NODE_DISCLAIMER
	PPP.guide/NODE_CONDITIONS
	PPP.guide/NODE_REGISTRATION
	PPP.guide/NODE_INTRODUCTION
	PPP.guide/NODE_SANAII
	PPP.guide/NODE_PPP
	PPP.guide/NODE_PPPSLIP
	PPP.guide/NODE_REQUIREMENTS
	PPP.guide/NODE_INSTALLATION
	PPP.guide/NODE_INST_AMITCPFZD
	PPP.guide/NODE_INST_AMITCPFTC
	PPP.guide/NODE_INST_INETTTF
	PPP.guide/NODE_CONFIGURATION
	PPP.guide/NODE_7WIRE
	PPP.guide/NODE_ACCM
	PPP.guide/NODE_ATH
	PPP.guide/NODE_BADXONXOFF
	PPP.guide/NODE_BROKENHDLC
	PPP.guide/NODE_CD
	PPP.guide/NODE_CHAP
	PPP.guide/NODE_CHAPFILE
	PPP.guide/NODE_DIALSCRIPT
	PPP.guide/NODE_DIALWINDOW
	PPP.guide/NODE_DNCP
	PPP.guide/NODE_EOFMODE
	PPP.guide/NODE_EXERCISE
	PPP.guide/NODE_FCS
	PPP.guide/NODE_IGNOREFCS
	PPP.guide/NODE_IPCP
	PPP.guide/NODE_IPSTR
	PPP.guide/NODE_LOG
	PPP.guide/NODE_LQR
	PPP.guide/NODE_MAXCONFIG
	PPP.guide/NODE_MAXFAIL
	PPP.guide/NODE_MAXTERM
	PPP.guide/NODE_MTU
	PPP.guide/NODE_NOACPC
	PPP.guide/NODE_NOEOFMODE
	PPP.guide/NODE_NOID
	PPP.guide/NODE_NOREQ
	PPP.guide/NODE_NOVJC
	PPP.guide/NODE_ONLINE
	PPP.guide/NODE_PAP
	PPP.guide/NODE_PAPFILE
	PPP.guide/NODE_REMOTEIP
	PPP.guide/NODE_SAVE
	PPP.guide/NODE_SERBAUD
	PPP.guide/NODE_SERBUF
	PPP.guide/NODE_SERNAME
	PPP.guide/NODE_SERUNIT
	PPP.guide/NODE_SHARED
	PPP.guide/NODE_STARTUP
	PPP.guide/NODE_TIMEOUT
	PPP.guide/NODE_USEODU
	PPP.guide/NODE_VJCMODE
	PPP.guide/NODE_DIALING
	PPP.guide/NODE_INACTIVITY
	PPP.guide/NODE_RESTRICTIONS
	PPP.guide/NODE_UTILITY
	PPP.guide/NODE_PPPINFO
	PPP.guide/NODE_PPPSTATS
	PPP.guide/NODE_PPPLQR
	PPP.guide/NODE_PPPLOG
	PPP.guide/NODE_HISTORY
	PPP.guide/NODE_ACKNOWLEDGEMENTS

